Observation of a Macroscopically Quantum-Entangled Insulator |
It has recently been proposed that insulators with large band gaps and strong spin-orbit coupling can host a new phase of quantum matter called a topological insulator that is characterized by entangled wavefunctions. The proposal has now been realized by an international collaboration led by researchers from Princeton University who studied the electronic structure of insulating alloys of bismuth and antimony by means of angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES. Their results constitute the first direct experimental evidence of a topological insulator in nature that is fully quantum entangled. In the future, a detailed study of topological order and quantum entanglement using their method can potentially pave the way for fault-tolerant (topological) quantum computing.
Quantum entanglement can occur in quantum mechanical systems of two or more objects in which the quantum states of the constituent objects are linked together, thus leading to non-classical correlations between observable physical properties of the system. Entanglement is a required feature of quantum computing schemes. The wavefunction coherence required for entanglement is difficult to maintain for macroscopic objects, so entanglement is usually observed in systems comprising atoms or smaller particles. However, the recently proposed topological insulators are described by a quantum entanglement of its wavefunction, dubbed topological order, which survives over the macroscopic dimensions of the crystal. The topological order sets these insulators apart from “ordinary” quantum phases of matter such as superconductors, magnets, or superfluids. Topologically ordered phases of matter are extremely rare and are experimentally challenging to identify. The only previously known example was the Nobel-Prize-winning discovery of the quantum Hall effect insulator in the 1980s in a two-dimensional electron system under a large external magnetic field at very low temperatures. While these systems are characterized by robust conducting states localized along the one-dimensional edges of the sample, two-dimensional topological insulators are predicted to exhibit similar edge states even in the absence of a magnetic field because spin–orbit coupling can simulate its effect. Three-dimensional topological insulators are an entirely new state of matter with no charge quantum Hall analogue. Their topological order or quantum entanglement is predicted to give rise to conducting two-dimensional surface states that have unusual spin-selective energy–momentum dispersion relations. With these conducting surface states as a key signature of the sought-for topological insulator , the collaboration studied the electronic structure of insulating alloys of bismuth and antimony (Bi_{1-x}Sb_{x}) by means of ARPES at ALS Beamline 12.0.1 and Stanford Synchrotron Radiation Light Source (SSRL) Beamline 5-4, and by spin-resolved ARPES at the COPHEE beamline of the Swiss Light Source (SLS). An important feature of the electronic structure of conductors is the Fermi surface, a map in momentum space of the maximum electron energy in the ground state. By systematically tuning the incident photon energy, they isolated the signal from surface states for further investigation of the surface state Fermi surface. Among their findings, they observed a notable property characteristic of the surface states of a three-dimensional topological insulator; namely, that its Fermi surface supports a geometrical quantum entanglement phase, which occurs when the spin-polarized Fermi surface encloses certain high-symmetry points (Kramers’ points and ) of the surface Brillouin zone (a kind of unit cell in momentum space) an odd number of times. In this way, they were able to confirm that these insulating alloys exhibited a three-dimensional topological insulating phase. In addition, the observed spin texture in the Bi_{1-x}Sb_{x} alloys is consistent with a magnetic-monopole image field beneath the surface, as predicted in theory. The work also demonstrates a general measurement approach for identifying and characterizing topological insulator materials for future research that can be utilized to discover, observe, and study other forms of topological order and quantum entanglement in nature.
Research conducted by D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, Y.S. Hor, R.J. Cava, and M.Z. Hasan (Princeton University); J.H. Dil and F. Meier (Swiss Light Source and Univerität Zürich-Irchel, Switzerland); J. Osterwalder (Univerität Zürich-Irchel, Switzerland); G. Bihlmeyer (Forschungszentrum Jülich, Germany); and C.L. Kane (University of Pennsylvania). Research Funding: National Science Foundation. Operation of the ALS and SSRL is supported by the U.S. Department of Energy, Office of Basic Energy Sciences (BES), and of the Swiss Light Source by the Paul Scherrer Institute. Publication about this work: D. Hsieh, Y. Xia, L. Wray, D. Qian, A. Pal, J.H. Dil, J. Osterwalder, F. Meier, G. Bihlmayer, C.L. Kane, Y.S. Hor, R.J. Cava and M.Z. Hasan, "Observation of Unconventional Quantum Spin Textures in Topological Insulators," Science 323, 919 (2009).
ALSNews Vol. 298, May 27, 2009
More ALS Science |