LBNL Masthead A-Z IndexBerkeley Lab mastheadU.S. Department of Energy logoPhone BookJobsSearch
Ring Leaders
Ringleader: Jay Nix, Beamline Director for the Molecular Biology Consortium Print

 

Jay Nix started started the user program at Beamline 4.2.2 back in 2004, shortly after the Molecular Biology Consortium built the beamline. The macromolecular crystallography beamline is a little different than most at the ALS because it’s privately managed by a consortium of 10 Midwest universities that pooled their money together to build the beamline, and now continue to do so to maintain it. Nix serves about 50 labs, around 200 users, mostly remotely.

How did a group of Midwest universities end up here at the ALS?

Back around 1999 or 2000 when ALS started the superbend project, they needed people to buy into it. We were originally going to build at the Advanced Photon Source, but Howard Padmore recruited us and we realized it would be much better to do it here.

I started off just getting the user program and the interface up so that we could collect data with users who were coming here. In 2007 we added a remote robot mounter. We were the first beamline to offer remote capabilities; it just made sense given that most of our users were coming from the Midwest.

 

What’s a typical day like for you?

Pretty much every day I’m running samples for some of my users, and in between I’m doing upgrades or maintenance at the beamline. A schedule is nice to look at, but when you’re in the lab growing crystals it’s a matter of when they are ready, they’re ready. So I’ve gotten rid of schedules altogether. I work closely with my users and prioritize which samples need to run when. It’s great for high-throughput projects, like pharmaceutical research. I like to say we are Fed Ex limited; I’ve had situations where there’s been 24 hours between when users say they need beam time and when I get their samples up.

One thing I’ve been focusing on more in the last few years is outreach, working with high school students and community college and university students. I’ve had  teachers who use the beamline to show students about crystallography.

 

What are the biggest challenges of your job?

Those 3 a.m. calls aren’t always fun, but I actually encourage my users to call me at any time of day if something doesn’t seem to be going right; I don’t want their samples to get damaged. Most things I can fix from home. Another challenge is always just trying to plan for the future, looking at what our users are going to need and how to fund that. I write grants, work on budgets a lot.

 

What do you enjoy most about your work?

I love working with my users. The work we do is interesting and important. We just had samples related to Zika virus. We just published a paper on HIV proteins. We’re working on things that directly affect the way people live. I’ve worked with a number of drug companies that have developed some very important treatments based on work at the ALS.

 

When you have time to relax, you…….?

I’m a big science fiction fan. I love Asimov, Bradbury, Terry Pratchett. I’ve been reading some amazing work by Neil Gaiman lately. And sometimes I just need a little Douglas Adams to get through my day.

 
Ringleader: Cobber Lam, ALS Systems Administrator Print

 

Cobber Lam started working at Berkeley Lab 10 years ago as a student assistant, while attending college at Cal State East Bay. Within two months, he was assigned to the ALS and has stayed put ever since. He used to be matrixed via IT, but last year he became a direct ALS employee. ALS IT support is divided between Lam and Tim Kellogg, with Lam being more forward-facing, dealing with users and staff, and Kellogg working on the back-end mostly with controls and operations groups.


What’s a typical day like for you?

My first priority is the beamlines; beam time is expensive and we need to make sure those beamline computers are running 24/7. Other than that, its mainly “break and fix.” On the side there’s always regular maintenance—new software, hardware, IT infrastructure maintenance, virtual machine maintenance. Sometimes I’m up and running all day, sometimes I’m stuck in a back room fixing a computer all day. My peak day was last year, when I logged 22,000 steps and 20 stories on my Fitbit. My average is more than 10,000 steps a day.

 

What do you enjoy most about working at the ALS?

Everyone is so nice, and I’m never bored.

 

What’s challenging about working at the ALS?

It’s such a unique environment. The beamline computers are non-standardized, so there’s always something specialized about each setup. On the user side, computers are more or less standardized. The skillset you need here is not the same as in a corporate environment where everyone has the same setup, same software. Everyone here is very smart, so I find that a lot of the problems they present to me are really challenging. By the time they call me, they’ve often already done some pretty smart trouble-shooting.

Another issue is staying on top of hardware development for storage needs; scientific research accumulates a lot of data!

I really have to know my customer base; I am always prioritizing tasks and have to know who needs me immediately, and who can wait.

 

Have you always been interested in computers and hardware?

Oh yeah, when I was a kid none of my toys survived. I was always too interested in taking them apart to see what was going on. When I was a bit older, building computers became my hobby. It was cheaper back in those days to buy the parts and build your own. I would say that I learned the most about computers before I even went to college.

 

How do you keep up with industry trends and advances?

I read a lot of tech websites and blogs, some daily. The ones I read the most are ArsTechnica.com, AnandTech.com, and blogs.technet.com. It’s really important that I know what’s available so that when someone presents you with an issue you can tell them what options they have and what would work best. We are always being called upon for consultation.

 

What do you like to do in your free time?

My main passion earlier in life was fine art photography—initially I thought I’d go to school for photography and become a photography  teacher—and I still really enjoy it. I carry my camera with me everywhere.

Other than that I really love to go camping, hiking, and I like to eat and have friends who are amazing cooks and enjoy cooking for me! One of my favorite local hiking spots is around Lake Chabot.

I’ve gotten used to the “glamorous” way of car camping; I usually go with a group of friends and everyone shares the cooking. Having grown up in Hong Kong, camping was taking a bus out to the countryside, getting dropped off on the side of the road and hiking for hours before making your own camp. Pretty different!

 
Ringleader: Warren Byrne Print


We sat down recently with Principal Scientific Engineering Associate Warren Byrne to get his take on the history and future of the ALS, from an accelerator point of view.

How long have you been at the Lab?

I’ve been at the Lab for about 37 years in March. I started in the operations group at the Bevatron, doing shift work. When I was working the swing shift I didn’t come in until 4:00pm, so in the mornings I would work on restoring my 1902 Maybeck home in the Berkeley Hills. Home restoration was my “other life” for about 13 years. The house was recently written up in American Bungalow magazine.

What are some highlights from your time at the ALS?

I moved to the ALS as it was being built in 1992, starting out in the operations group and then moving into the accelerator physics group. For the past 16 years, I’ve been in charge of overseeing the injector system, which consists of the linac and the booster synchrotron and the electron gun. I’ve really enjoyed living so close to work, being able to almost literally walk to the office. Because of that, I’ve also become the go-to person when things are going wrong at the ALS in the middle of the night! It’s a 24/7 operation, and we take the status of the beam really seriously.

What has kept you at the ALS all these years?

Well, I feel like it has literally kept me alive! I don’t have a commute…. Even if I drive in, there are only two stop signs before I’m here. I can be here in 5 minutes. When I’m at work, I’m moving around all day, whether on the beamline floor or around the Lab at lunchtime. I’m afraid I would be terribly lazy if it weren’t for work. I grew up in Montclair and have lived in Berkeley since 1970, so it’s definitely home to me. It’s also been really interesting and challenging to be a part of this facility all these years and see the machine through multiple upgrades. The technical challenges are just so unique. It never gets boring.

Looking forward, what do you see as potential in the ALS?

There is a lot of potential in an upgrade of the ALS to make the beam smaller and brighter. Of course that requires a huge revamp of the facility; pulling out and replacing all the magnets and in order to get the small beam size the magnetic fields have to be quite strong. To get strong fields, pole tips need to be closer together, which means the vacuum chamber has to be a lot smaller so there’s less room for the beam to travel. With such a small aperture, the way we have to inject the beam is totally different. Unlike the current injection scheme where a few electron bunches are added each shot to the existing beam, after the upgrade, the entire storage ring beam will be swapped out into an accumulator ring, while at the same time a higher intensity beam from the accumulator is injected into the storage ring. The beam in the accumulator ring then gets topped up before the next beam swap-out. This exchange of beams between the storage ring and accumulator will occur at intervals of several tens of seconds.

 
Ringleader: Ashley White, Director of Communications Print

 

After many years as a researcher followed by a few in government and policy, Ashley White sees her new position as ALS Director of Communications as a perfect blend of it all. “I’m thrilled to be back in a research environment, since I started out my career as a researcher and loved being in the lab,” she says. “When I walk around the ALS and see all the tin foil and the beamline equipment, it feels like home.”

After completing her PhD in Materials Science from the University of Cambridge, White says she was looking for something “a little bit different” and heard about an opportunity to spend a year on Capitol Hill as a special policy advisor in the U.S. Senate. “I thought I’d just do it for a year and go back to being a researcher,” she says, but the experience launched a new focus for her career.

White spent one year as a Materials Research Society/Optical Society Congressional Science and Engineering Fellow, working in Minnesota Senator Al Franken’s office. Her focus was mainly on STEM education, which she says aligned nicely with the science education work she had done as a grad student through Science and Engineering Experiments for Kids (SEEK), hosting elementary and middle school workshops. White wrote legislation to create a STEM master teacher corps, a program that would identify top science, engineering, and math teachers and provide them with further professional development.

After her stint on Capitol Hill, White continued on to the executive branch, working in the Materials Research Division of the National Science Foundation as an American Association for the Advancement of Science (AAAS) Science and Technology Policy fellow. “I really enjoyed getting that broad overview, seeing how things worked in both branches of government,” she says.

Toward the end of her time at the NSF, White had focused on materials for sustainable development, which led to her next position at the U.S. Green Building Council (USGBC). The USGBC sets standards for green building practices and certifies green buildings through LEED, which gave White the opportunity to interface with industry.

White moved to the Bay Area last year and began to think about how she could combine her recent work experience and her passion for research, which led her to Berkeley Lab. “I was really looking to get back into a research environment,” she says. “I knew that I wanted that collaborative mindset and that I could contribute my knowledge of how things work at a federal level, and how they influence what researchers are able to do.”

The collaborative mindset was a hallmark of White’s conversations about working at Berkeley Lab—“everyone mentioned it when I talked with them about what it was like to work here,” she says. “During the interview process, I was really struck by how positive and welcoming everyone was.”

In addition to her passion for science, White has developed her passion for music throughout her life. She has played violin since the age of six and has developed and taught university courses on the connections between science and music. Locally she performs with the Bay Area Rainbow Symphony.

 
Ringleader: Ken Chow Print

In his new role as ALS Engineering Lead, Ken Chow has taken on a consolidated role that was previously split between mechanical and electrical. As of August, a reorganization of ALS engineering has Chow overseeing all engineering tasks at the ALS, which includes magnetic and vacuum systems, mechanical engineering and technology, and electrical and controls engineering.

Chow has only been in his new role for about a month, but he already has a vision of greater communication. “I’m planning to meet regularly with engineering leads at the ALS,” he says. “I really see an important part of my job as helping to communicate engineering-related matters within ALS, to engineering staff, scientists and management, but also between ALS Division and Engineering Division.”

Chow is anticipating that a new engineering systems program being developed in the Engineering Division by Engineering Systems Lead Daniela Leitner will be rolled out to all engineering staff soon. “Here at the ALS I see us using a version that is tailored to our specific needs,” says Chow. “We’ll be doing the same work but I think an improved structure will add clarity to our engineering practices and also yield greater consistency between different projects.”

Another primary focus in his new role will be ALS-U. “It’s going to be a big challenge to keep current ALS projects going and to also try to get ALS-U off the ground at the same time,” he says. “ALS-U is going to be a really exciting upgrade.”

Prior to his new role, Chow’s work was mainly focused on beamlines and endstations—he was involved in larger beamline projects such as MAESTRO and COSMIC, providing engineering management and support.

“It’s a great time to be here; there are a lot of great projects going on and the prospect of ALS-U is very exciting,” Chow says. “It’s always fun to be involved with something like this.”

 
Scott Taylor, ALS Safety Manager Print

 

The new Safety Manager at the ALS, Scott Taylor, is not so new. Taylor has been working at Berkeley Lab for 30 years now, starting in his early days as a biofuels researcher working with Melvin Calvin. Taylor isn’t new to safety either—he has been on the Lab’s Safety Review Committee since 1992 and the division safety coordinator for Life Sciences for the past six years.

Taylor’s first foray into safety at the Lab was back in 1990, when he was working in research medicine at Donner Lab. DOE safety inspections were announced and Taylor, being the youngest member of the team, was tasked with making sure his building was ready for safety inspections. There weren’t division safety coordinators back in those days, Taylor explains.

Joining the ALS reminds Taylor of his early days at the Lab, when he felt energized by the eclectic mix of coworkers from various disciplines all working toward a common goal.

“I liked those experiences because they make you realize that there are so many things you don’t know and you’re outside of your normal comfort zone,” says Taylor. “And that really defines the ALS—there’s a huge breadth of research interest and so the safety scope is also enormous.”

Taylor sees many safety challenges that are unique to the ALS, and many hazards are so intricately intertwined that the mere level of complexity itself is a challenge. “We have such a huge influx of users from all over the world,” says Taylor. “And the DOE has a safety culture that’s probably different from anywhere else in the world, with a higher degree of compliance and a reduced acceptance of risk.”

He’s been inspired by how welcoming everyone at the ALS has been, and comforted in the knowledge that his friend and previous ALS safety manager, Jim Floyd, is just a phone call away.

Taylor sees a couple of big projects taking main stage in the near future, the first being a new work planning and control system that will modify and streamline the work authorization process. He’s been intimately involved in the creation of the system as project manager for the past four years, which will definitely be an advantage when it comes to implementation, he says.

The second major focus, as Taylor sees it, will be the electrical safety changes coming to the Lab. “We’ll have to learn how to apply those so that we are working safely, but still maintaining our high level of scientific productivity.”

 
Giselle Jiles and Angel Hernandez, User Office Print

User office guest registration “specialists” Angel Hernandez and Giselle Jiles play a unique role at the ALS—they are often the first line of face-to-face contact new users have when they arrive for their beamtime. As such, the two see themselves as the caregivers of the ALS user experience.

“We are here to do everything in our powers to make sure they get down to that beamline,” says Jiles. “And the best customer service we can offer produces the best results for the scientists,” adds Hernandez.

Hernandez manages guest registration, travel, stipends, and publications, while Jiles manages the reception desk in the mezzanine.  When asked what they most enjoy about what they like to call their “meet and greet” role at the ALS, the two agree in their enthusiasm about supporting science. Hernandez has been in his role at the ALS for five years; Jiles for two.

That support starts long before users arrive at the ALS, with making sure that they everything they need to make the check-in process seamless. “They get every detail to make the transition as smooth as possible,” says Jiles. “We give them almost an overload of information!”

Once users arrive, they usually see Jiles first for processing of travel documents, then head over to Hernandez for badging and publications management. They both enjoy building relationships with users and are often rewarded for their customer service role with treats from all around the world, invitations to visit, and birth announcements. “The users know that I have a weakness for chocolate,” jokes Jiles.

Hernandez describes his job as “culturally infusing” because of the range of global visitors he regularly interacts with. “We get to see how each segment of the world reacts to us and, in a sense, we’re also representing the United States,” he says.

“It’s really interesting to hear about what users are researching and how it is going to affect our lives down the line,” says Hernandez. “We almost have a look into the future from that respect.”

“I tell some of the scientists: I want to get you down onto that floor, because I am going to benefit from what you do,” says Giselle. “I don’t think I’ve ever worked in an environment where people are as passionate about what they do,”

 
Monroe Thomas, Mechanical Technician Print

 

The weekend before the ALS was scheduled to start up again after the most recent shutdown, mechanical technician Monroe Thomas kept things running on schedule by coming in on a Saturday to pull a 300-pound capacitor “uphill” out of the new RF power supply. It’s just another “(not so) typical” day at work for him, he says. But it’s his reliability operating cranes and supervising moves of heavy equipment around the ALS that plays an integral role in keeping the facility going.

Monroe has been a part of the ALS “mech tech” team for the past 14 years and is the point person for all critical equipment and endstation moves. Though he’s training another mechanical technician to operate the crane, it’s Monroe who is called upon for critical moves. He plays a key role in shutdowns—whether it’s installing magnets and undulators or taking an endstation on- or off-line. For bigger jobs he coordinates with the riggers from the Facilities division.

“The biggest challenge of this job is simply picking things up, because they’re not engineered to lift,” says Monroe. “So you have to figure out how to pick up each individual piece without damaging other parts.”

Monroe came to the ALS after 20 years in the military and about 10 years in the aftermarket motorcycle business, where he worked assembling and packaging parts for resale. He maintains this interest, riding his motorcycle every day and performing all his own maintenance work.

Though he’s a common sight around the ALS, Monroe surmises it’s his epic homemade cheesecakes that have made him well-known (he once brought in about 24 cheesecakes to share; his recipes are a well-guarded secret).

When asked to recall a particularly memorable moment in his time at the ALS, Monroe harkens back to his first year here, when he and a few other members of his team spent 17 hours straight working with the crane to change out a magnet cooling coil.  And yet, he’s stayed on 14 years running after that grueling event.

“It’s the variety of work and the variety of people I get to interact with here that I like the most about this job,” he says.

 
<< Start < Prev 1 2 3 4 5 6 7 8 Next > End >>

Page 1 of 8