LBNL Masthead A-Z IndexBerkeley Lab mastheadU.S. Department of Energy logoPhone BookJobsSearch
April 2012 Print

Zahid Hussain, Division Deputy for Scientific Support

 

As the ALS Division Deputy for Scientific Support, I oversee the Scientific Support Group (SSG), with the help of deputies Eli Rotenberg and Michael Martin. The SSG's primary mission is to support the efforts of researchers at the ALS through scientific and technical collaboration and scientific outreach. Depending on the needs of ALS users, the degree of collaboration can range from technical assistance with a beamline to full partnership in developing new research programs and experiment endstations. The SSG also strives to expand ALS scientific programs and broaden its user base through presentations, demonstration experiments, and publications.

The group organizes a variety of seminars, including a weekly ALS Center for X-Ray Optics (CXRO) x-ray science and technology seminar series: a targeted weekly lecture series with talks given by leading researchers on various topics.

The ALS Doctoral Fellowship in Residence program, established in 2001, enables students to acquire hands-on scientific training and develop professional maturity for independent research. In 2007, we initiated an ALS Postdoctoral Fellowship Program that identifies outstanding individuals in new and emerging scientific fields and provides them with advanced training. Both programs lead the way in establishing a pipeline of future beamline scientists to U.S. Department of Energy Basic Energy Sciences user facilities. 

The SSG played a very active role in creating the "Advanced Light Source Strategic Plan: 2009–2016, Addressing the Scientific Grand Challenges and Our Energy Future" and the "Photon Science for Renewable Energy" brochure, which is currently being updated.

The SSG has pioneered unique techniques that enable novel science, particularly using soft x rays. Some of these are listed below:

  • Development of ambient-pressure x-ray photoemission spectroscopy (APXPS) that enables XPS experiments at pressures of up to 10 torr, bridging a gap between ultrahigh vacuum and real-world industrial manufacturing conditions. This instrument received a 2010 R&D 100 Award.
  • Development of time-of-flight (TOF)–based electron-energy analyzers that provide unique advantages over dispersive analyzers. Recently, spin-resolved TOF achieved a world-record energy resolution of better than 20 meV and an overall figure of merit that is 1000 times better than state-of-the-art commercial systems.
  • Development of a scattering chamber that has been used both at the ALS for static measurements and at the LCLS for dynamic studies of charge ordering.
  • Development of a new generation of both high-resolution and high-throughput spectrographs for photon-in/photon-out spectroscopy. Both of these perform at orders of magnitude higher than previous generations. The high-resolution RIXS spectrograph has the world’s best resolving resolution of 10 meV.
  • Achieved a spatial resolution of better than 10 nm from a scanning transmission x-ray microscope.

The SSG has recently developed a new, higher-flux infrared beamline (Beamline 5.4), the meV-resolution beamline (MERLIN), and has begun construction of the MAESTRO beamline that will allow for nano-ARPES studies. Progress has also been made in the development of a coherent scattering chamber for the COSMIC beamline. We plan to submit a proposal for the construction of the Advanced Materials Beamline for Energy Research (AMBER), which will study energy related problems under in-situ and operando conditions.

I am very proud of the work done by the members of the SSG. They play a pivotal role in keeping ALS science at the forefront of its fields and making the ALS an outstanding user facility.