LBNL Masthead A-Z IndexBerkeley Lab mastheadU.S. Department of Energy logoPhone BookJobsSearch
April 2013 Print

Simon Morton, Instrumentation Manager for the Berkeley Center for Structural Biology

 

Simon Morton, Instrumentation Manager for the Berkeley Center for Structural Biology (BCSB) and member of the Experimental Systems Group (ESG), is responsible for developing new hardware and systems to improve ALS beamlines. “We have a very aggressive program of continuous upgrades so that we’re always on the cutting edge,” says Morton. “One of the first jobs I had in coming to BCSB was evaluating the performance of the Sector 5 beamlines and developing new optics upgrades for them, which increased the flux about 30 times from 2004-2007.”

Morton has been a member of the Physical Biosciences Division, but he is now transitioning to work 60% time for the ALS, developing beamline upgrades as part of ESG. An example of one such project is the planned relocation of the ALS Small Molecule Beamline 11.3.1. One of the most productive beamlines at the ALS, “this very simple beamline design was put together very economically, but it no longer yields optimal performance using its current bend magnet source,” says Morton, so he hopes to move it to a stretch of the ring with a superbend magnet.

He is looking at lessons learned from previous upgrades to ALS protein crystallography beamlines, applying them to other existing beamlines to cost-effectively upgrade the optics, improve performance, and make use of already-developed, proven designs. “Because of the aggressive upgrades we’ve been doing to our beamlines, the performance is as good as it can be. Smaller protein crystals require a smaller and more intense x-ray beam, but we are already capturing all the x-rays and focusing them down to the smallest spot we can. So to get to the next level we need a new source of x-rays, which would be an undulator,” Morton says.

Last year Morton and Jeff Dickert (at left in photo above) developed the Compact Variable Collimator (CVC), winning them the Halbach Award for Innovative Instrumentation at the last ALS User Meeting, as well as an R&D 100 award. Morton explains his invention “To get the best data quality, it’s very important that the size of the x-ray beam is matched exactly to the size of the crystal, or even to a particular portion of the crystal that you are studying. The CVC allows users to type the size of the beam they want and have it matched instantly. They can do it remotely, there’s no realignment required, which is really the unique feature here.” Now, all BCSB beamlines have a CVC. Morton is working with other synchrotrons to install the technology and is also seeking a commercial partner.

Until recently, Morton has focused his instrumentation talents on the BCSB, which is always looking to increase the performance of its beamlines by upgrading optics, increasing capacity and throughput, and improving automation to stay competitive in the protein crystallography market. “We’re all in competition with each other, but the ALS beamlines do very well,” Morton says. He and his colleagues do a lot of outreach because users apply to multiple synchrotrons. Hosting a booth at conferences—like the upcoming American Crystallographic Association’s Annual Meeting (to be held June 20-24 in Honolulu, Hawaii)—allows them to actively promote ALS capabilities and beamlines amongst tough competition.

That’s because most BCSB users don’t come to the beamlines to do their research, but instead rely on highly automated, robust tools to get measurements at the synchrotron of their choice. “A lot of our users are proprietary users paying for beam time. We’re providing a commercial service, so things just have to work. We have to have automation, reliability, and support,” Morton says. “Our users are biologists, not synchrotron scientists. We run in full remote control, so we have a lot of integrated robotics, software, and hardware.”

During the most recent ALS shutdown, a number of upgrades were done to the optics, robotics, and sample-positioning systems to improve the capacity and performance of BCSB beamlines. Most significantly, the cooling system and the focus adjustment system were improved on the Sector 5 mirrors, which should tighten their focus. The capacity of the 5.0.2 robot was doubled as well, eliminating the need for staff to reload the machine on the weekends when beamlines are running fully remote users.

In addition to 35% academic and general users, about 65% of users on Sector 5 come from industry, primarily pharmaceutical companies doing drug development research through a participating research team. In Sector 8, 70% are from the Howard Hughes Medical Institute (HHMI), which funds the beamlines. “HHMI users tend to work on a small number of extremely challenging, multi-year projects. I don’t always keep track of the research projects,” Morton jokes. “I’m more into the hardware, myself.”