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The origins of electron holography

1947 Denis Gabor proposes holography ("whole writing") as a
means to correct for electron microscope aberrations-
Nobel prize 1971.
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Electron holography
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Off-axis electron holography

CCD Philips CM300 FEG
Hologram camera  Gatan Imaging Filter
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Electron holography

If V(x) and B(x) do not vary in the incident electron beam
direction, then :

Phase shift: |¢(x) = CEV(X)t(x) - (%) B (x)t(x)dx

oee (7 ek

Sensitive to: magnetic fields

composition

density

bonding/ ionicity

electrostatic fields at depletion layers
electrostatic fringing fields outside materials

Off-axis electron hologram
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Digital reconstruction
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Basis of off-axis electron holography

Why is electron holography useful?

Conventional bright-field TEM: y(r) = A(r)exp[ip(r)]

i) = A@)°

Off-axis electron holography: Ihot(r) = ‘W(r) + exp[Zniqc.r]\z

lhot(r) = 1+ A2(r) + 2A(r)cos[2nqc.r + o(r)]

FT[lhot(r)] = 8(q) + FT[AZ(r)] + 8(q+qc)®FT[A(r)explio(r)]] + 8(a-ac)® FT[A(r)exp[-id(r)]]
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Multi-walled carbon nanotubes containing Fe

Krzys Koziol, Alan Windle
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Quantitative measurements using electron holography

1. Magnetization

2. Coercivity

3. Magnetic moment

4. Critical sizes for SPM/ SD/ PSD/ MD transitions

5. Effects on magnetic microstructure of interactions,
shape and crystallography
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Magnetic nanostructures

250 x 80 nm pesudo spin valve elements
fabricated on Si using interferometric lithography and examined in plan view

Thermally oxidized Si wafer

Cross-section of each element
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Magnetic nanostructures

Magnetic remanent states Average remanent hysteresis loop
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Magnetic nanostructures s
g
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Phase shift (rad)

Magnetic nanostructures

Average remanent hysteresis loop Simulated remanent hysteresis loop
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Nominal parameters: Best-fitting parameters to measurements:
Element size 250 x 80 nm Element size 200 x 38 nm
NiFe layer thickness 4.1 nm NiFe layer thickness 4 nm
Co layer thickness 3.5 nm Co layer thickness 2 nm
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Naturally occurring magnetic crystals
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Naturally occurring crystals: rock magnetism

Blue: magnetite (Fe;0,) Magnetic remanent state
Red: ulvéspinel (Fe,TiO,) after saturating sample

Richard Harrison, Josh Feinberg
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Naturally occurring crystals: magnetotactic bacteria

Disrupted linear chain of
maghnetite crystals in a
genetically modified

. bacterial cell
Four chains of magnetite crystals

in a natural bacterial cell Ed Simpson, Mihaly Posfai, Dirk Schiiler
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Spatial resolution of magnetic information

1. Electron optics of Lorentz lenses suggests that a spatial
resolution of between 0.5 and 2 nm should be possible.

2. Signal to noise usually limits this to 5-10 nm at best.

3. This is not a fundamental obstacle - the practical limitation is the
patience of the operator.

4. Automation of acquisition and analysis is possible in principle.
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Chains of Fe;,Nig, Single Crystalline Nanoparticles

Chemical map
Green = O, Red = Ni, Blue = Fe
(Purple = magnetic, Green = non-magnetic)
Oxide around each particle is ~4 nm thick

Department of Materials Science
and Metallurgy

Bil402e2e2 it 1

Remanent magnetic state recorded
using electron holography:

Contours are chaneled along the
center of a 75 nm diameter particle

by its neighbors

Contour spacing (1/6) radian.

)

INIVERSITY OF

AMBRIDGE

Martin Hytch



Chains of Fe,yNiy, Single Crystalline Nanoparticles

50 nm 50 nm
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Magnetic nanostructures

100-nm-diameter Co disks
fabricated on Si using interferometric lithography and examined in plan view

SEM image of Magnetic remanent state recorded using holography
100 nm diameter 20 nm high Contour spacing 0.033 radians

Co disks fabricated on Si
in a square array of side 200 nm
Caroline Ross,

Simon Newcomb
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Co nanoparticle bracelets
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Co nanoparticle bracelets - magnetic microstructure

Alex Wei
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10 - 20 nm magnetic nanoparticles periodically encapsulated
in carbon nanotubes
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Two-dimensional arrays of 7 nm Fe cubes

Bright-field image Magnetic phase contours recorded
at liquid nitrogen temperature
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Two-dimensional arrays of 7 nm Fe cubes

Bright-field image Magnetic phase contours recorded
at liquid nitrogen temperature
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Correlation with three-dimensional microstructural information
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Isolated equidimensional 30 nm magnetite nanocrystal
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Magnetic nanostructures

150 x 50 nm Ni pillars
Fabricated on Si using interferometric lithography and examined in cross-section
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Ni pillars. 100nm spacing. Nominally 115x57 nm.

Magnetic nanostructures

2900 Oe up after sat. down

115 x 57 nm Ni pillars
Fabricated on Si using interferometric
lithography and examined in cross-section
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Magnetic layers examined in cross-section
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Magnetic induction mapping using off-axis electron holography

Magnetic layers in cross-section
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Analysis of 2 phase images between which magnetization in specimen has been reversed

Off-axis electron
hologram obtained
from a magnetic

tunnel junction with

a 4nm HfO, tunnel
barrier.

100 nm
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Advantages of electron holography

Spatial resolution can approach 1 nm

Quantitative information can be obtained and compared with
simulations

Non-invasive

Samples examined in transmission

Correlation with local microstructure and composition possible
Samples can be examined over a wide range of temperatures

Samples can be examined with currents passing through them
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Disadvantages of electron holography

Region of vacuum close to area of interest required
Samples examined in transmission

In general not possible to obtain magnetic information about
antiferromagnets

Sample preparation can affect magnetic properties and create
'dead’ layers

Time resolution poor (seconds)

Difficult to interpret a 2D projection of only 2 components of a 3D
field

Difficult to achieve a spatial resolution of better than a few nm

Difficult to design complicated experiments inside an electron
microscope
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Future developments and challenges for electron
holography

1. Imaging weak magnetic fields
2. Imaging working devices

3. Characterizing magnetic fields inside materials
in three dimensions
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Chain of five Fe,Ni;, Single Crystalline Nanoparticles

Diameters in nm shown -
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Chain of five Fe,Ni;, Single Crystalline Nanoparticles

Two orthogonal tilt series
of electron holograms

100 nm
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Fischione Biasing Tomography Cartridge-based Holder
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Magnetic needle with applied electric field

Phase contours: 0V between needles

Simon Newcomb, Richard Langford
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Summary

Electron holography allows magnetic (and electric) fields in
nanoscale materials and devices to be characterized.

A spatial resolution of better than 1-2 nm for mapping the in-
plane magnetic induction in a specimen can be achieved in
principle.

Electron holography may be combined with electron
tomography to provides three-dimensional information about
electrostatic and magnetic fields in materials.
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